The Absolute Anabelian Conjecture for Curves with resolution of Non-Singularities

Emmanuel Lepage

IMJ-PRG, Sorbonne Université

Foundations and Perspectives of Anabelian Geometry

Outline

- X, Y: hyperbolic curves over finite extension of \mathbb{Q}_p
 - Absolute anabelian conjecture AAC(X, Y):
 Isomorphisms of étale fundamental group Π_X ≃ Π_Y come from isomorphisms X ≃ Y
 (absolute: not given with an augmentation map to G_K)
 - Resolution of non-singularities (RNS_X):
 Every semistable model of X is dominated by the stable model of some finite étale cover of X
 - Main result of this talk:

$$RNS_X \& RNS_Y \Longrightarrow AAC(X, Y)$$

relative Grothendieck Anab. Conj. (Isom. version)

Theorem (S. Mochizuki)

X/K, Y/L: two hyperbolic curves over sub-p-adic fields.

 Π_X, Π_Y : étale fundamental groups of X and Y.

 G_K , G_L : absolute Galois groups of L and K.

Assume following commutative diagram:

such that $G_K \to G_L$ is induced by an isomorphism $K \overset{\sim}{\to} L$. Then $\Pi_X \to \Pi_Y$ is induced by an isomorphism $X \overset{\sim}{\to} Y$

absolute Anab. Conj. (Isom version)

Conjecture (AAC(X,Y), S. Mochizuki)

X/K, Y/L: two hyperbolic curves over p-adic fields.

 Π_X , Π_Y : étale fundamental groups of X and Y.

Assume we have an isomorphism:

$$\phi:\Pi_X\stackrel{\sim}{\to}\Pi_Y$$

Then $\Pi_X \to \Pi_Y$ is induced by an isomorphism $X \stackrel{\sim}{\to} Y$

Proposition

Under the same assumptions, ϕ induces an isomorphism $G_K \xrightarrow{\sim} G_L$ (but not known to be geometric in general)

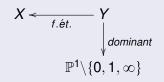
Remark

Neukirch-Uchida + Rel. AC ⇒ AAC over Number Fields

Curves of Quasi-Belyi type

Definition

A hyp. curve X is of pseudo-Belyi type if there are maps:



Theorem (Mochizuki)

If X, Y are curves of pseudo-Belyi type, then AAC(X, Y) is true.

Intermediate steps

 $\widetilde{X} = \varprojlim_{(S,s_0) \to (X,x_0)} S$: universal pro-finite étale cover of X.

Natural action $\Pi_X \curvearrowright \widetilde{X}$

Definition

- Let x closed point of X and $\tilde{x} \in \tilde{X}$ a preimage of x.
 - $D_{\tilde{x}} = \operatorname{Stab}_{\Pi_X}(\tilde{x}) \subset \Pi_X$: decomposition group of x $D_x = \operatorname{conjugacy class}$ of $D_{\tilde{x}}$.
- An isomorphism $\phi: \Pi_X \xrightarrow{\sim} \Pi_Y$ is point-theoretic if $D \subset \Pi_X$ is a decomposition group if and only if $\phi(\Pi_X)$ is a decomposition group.

Theorem (Mochizuki)

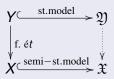
Let $\phi:\Pi_X\stackrel{\sim}{\to}\Pi_Y$ be point-theoretic, then ϕ is induced by an isomorphism $X\stackrel{\sim}{\to} Y$

Characterization of decomposition groups via *curspidalization* techniques.

Resolution of Non-Singularities

Definition

• Let X be a hyperbolic curve over an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p . X satisfies resolution of non-singularities (RNS_X) if for every semi-stable model \mathfrak{X} of X, there exists a finite étale cover $f: Y \to X$ such that f extends to a morphism $\mathfrak{Y} \to \mathfrak{X}$ where \mathfrak{Y} is the stable model of Y.



• Let X be a hyperbolic curve over a finite extension K of \mathbb{Q}_p . X satisfies resolution of non-singularities (RNS_X) if its pullback to an algebraic closure of K does.

Valuative version of RNS

Definition

A valuation v on K(X) is of type 2 if it extends the valuation of \mathbb{Q}_p and its residue field \tilde{k}_v is of transcendance degree 1 over \mathbb{F}_p .

Example

If \mathfrak{X} is a normal model of X and Z is a irreducible component of the special fiber \mathfrak{X}_s , then $v_z = mult_Z$ is a valuation of type 2 on K(X). A valuation of this form where \mathfrak{X} is the stable model (if it exists) is called *skeletal*

Proposition

X satisfies resolution of non-singularities if and only if for every valuation v of type 2 on K(X), there exists a finite étale cover $Y \to X$ and a skeletal valuation v' on K(Y) such that $v = v'_{|K(X)}$.

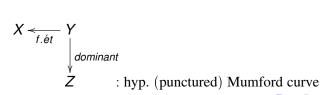
Example of Curves with RNS

A smooth curve over $\overline{\mathbb{Q}}_p$ is a Mumford curve if every normalized irreducible component of its stable model is isomorphic to \mathbb{P}^1 .

Theorem

Let X, Y be two hyperbolic curves over $\overline{\mathbb{Q}}_p$ and assume that Y satisfies RNS.

- **1** If there is a dominant map $f: X \to Y$, then X satisfies RNS.
- ② If there is a finite étale cover $f: Y \to X$, then X satisfies RNS.
- If X is a Mumford curve, then X satisfies RNS.
- w If X is of pseudo-Belyi type, then X satisfies RNS.



Main Result

Theorem

Let X and Y be two hyperbolic curves over finite extensions of \mathbb{Q}_p satisfying RNS. Then every isomorphism of fundamental groups $\phi: \Pi_X \xrightarrow{\sim} \Pi_Y$ is induced by an isomorphism $X \simeq Y$.

Remark

Includes some proper curves, contrary to the quasi-Belyi type result.

Sketch of the proof:

- Step 1: One just needs to show that ϕ is *point-theoretic*.
- Step 2: Recovery of the topological Berkovich space.
- Step 3: Characterization of rigid points.

Berkovich spaces

Let X be an alg. variety /K non-archimedean field. If $X = \operatorname{Spec} A$,

$$X^{\mathsf{an}} = \{ \mathsf{mult. semi-norms} \ A \to \mathbb{R}_{\geq 0}, \mathsf{extending norm of} \ K \}$$

topology: coarsest s.th. $\forall f \in A, x := |-(x)| \in X \mapsto |f(x)| \in \mathbb{R}$ cont. $X \mapsto X^{\mathrm{an}}$ functorial, maps open coverings to open coverings. \Longrightarrow glues together for general X. set theor., $X^{\mathrm{an}} = \{(x, |-|); x \in X, |-| : \mathrm{mult.\ norm\ on\ } k(x)\}$

- $\Longrightarrow X_{cl} \hookrightarrow X^{an}$ (rigid points)
- $X(\widehat{K}) \to X^{an}$ (type 1 points (\supset rigid points))
- If X is a smooth curve, valuations of type 2 on K(X) induce points in X^{an} (type 2 points)

Example of points:

Example: the affine line

Let
$$X = \operatorname{Spec}(\mathbb{C}_p[T]) = \mathbb{A}^1_{\mathbb{C}_p}$$
.
If $a \in \mathbb{C}_p, r \in \mathbb{R}_{\geqslant 0}, |\sum_i a_i (T-a)^i|_{b_{a,r}} := \max_i (|a_i|r^i) \longrightarrow b_{a,r} \in \mathbb{A}^{1,\operatorname{an}}_{\mathbb{C}_p}$

- If r=0, $b_{a,r}$ of type 1 (\mathbb{C}_p -points).
- If $r \in |p|^{\mathbb{Q}}$, $b_{a,r}$ of type 2.
- If $r \notin |p|^{\mathbb{Q}}$, $b_{a,r}$ of type 3 $(\operatorname{rk}(|K(X)^{\times}|_{b_{a,r}}) = 2)$.
- + points of type 4 corr. to decreasing sequences of balls with empty intersection, completion of K(X) is an immediate extension of \mathbb{C}_p .

Berkovich curves

X/K: smooth curve over non-archimedean field

 \overline{X} : smooth compactification of X

 \mathfrak{X}/O_K : semi-stable model of X/K

 $\mathbb{G}_{\mathfrak{X}}.$ dual graph of the semi-stable curve $\mathfrak{X}_{\textit{s}}$

There is a natural topological embedding ι and a strong deformation retraction π :

$$\mathbb{G}_{\mathfrak{X}} \xrightarrow{\iota} X^{\mathsf{an}}$$

 $X^{an}\setminus\iota(\mathbb{G}_{\mathfrak{X}})$: disjoint union of potential open disks (becomes a disk after finite extension of the base field).

By taking the inverse limit over all potential semi-stable models, they induce a homeomorphism

$$\overline{X}^{\operatorname{an}} \stackrel{\sim}{\to} \varprojlim_{\mathfrak{X}/K'} \mathbb{G}_{\mathfrak{X}}$$

Sketch of the proof

Step 2: Recovery of the topological Berkovich space.

Theorem (Mochizuki)

Let X/K and Y/L be two hyperbolic curves over finite extensions of \mathbb{Q}_p that admit stable models \mathfrak{X}/O_K and \mathfrak{Y}/O_L . They are naturally enriched as log-schemes \mathfrak{X}^{log} and \mathfrak{Y}^{log} . Then every isomorphism $\Pi_X \overset{\sim}{\to} \Pi_Y$ induces an isomorphism of log-special fibers $\phi^{log}: \mathfrak{X}_s^{log} \overset{\sim}{\to} \mathfrak{Y}_s^{log}$.

In particular, it induces an isomorphism of dual graphs of the stable reduction: $\phi_{\mathbb{G}}: \mathbb{G}_X \xrightarrow{\sim} \mathbb{G}_Y$.

If X satisfies RNS, one gets a natural homeomorphism

$$\widetilde{\widetilde{X}}^{\mathsf{an}} \subset \overline{\widetilde{X}}^{\mathsf{an}} := \varprojlim_{\mathcal{S}} \overline{\mathcal{S}} \overset{\sim}{\to} \varprojlim_{(\mathcal{S}, \mathcal{S})} \mathbb{G}_{\mathcal{S}},$$

where S goes through pointed finite étale covers of X admitting stable reduction over their constant field (\overline{S} : smooth compactification of S). Apply isom. $(-)_{\mathbb{G}}$ to open subgps of Π_X and Π_Y , \leadsto homeomorphism

$$\widetilde{\phi}: \widetilde{X}^{\mathrm{an}} \overset{\sim}{\to} \widetilde{Y}^{\mathrm{an}}$$

(compatible with the actions of Π_X and Π_Y and ϕ). Quotient by actions of the fundamental groups (resp. geom. fund. groups) \leadsto

$$\phi^{\mathrm{an}}: X^{\mathrm{an}} \overset{\sim}{\to} Y^{\mathrm{an}} \quad (\mathrm{resp.} \quad \phi^{\mathrm{an}}_{\mathbb{C}_p}: X^{\mathrm{an}}_{\mathbb{C}_p} \overset{\sim}{\to} Y^{\mathrm{an}}_{\mathbb{C}_p}).$$

Action compatibility \implies If $\tilde{x} \in \widetilde{X}^{an}$, $\phi(D_{\tilde{x}}) = D_{\tilde{\phi}(\tilde{x})}$ \longrightarrow To show point-theoreticity, it is enough to show that ϕ^{an} maps rigid points to rigid points.

Does every homeomorphism $X^{an} \rightarrow Y^{an}$ preserves rigid points? No (cannot distinguish between type 1 and type 4 points). Need of a stronger property about this homeomorphism.

• Step 3: Metric characterization of \mathbb{C}_p -points. Let \mathfrak{X} be a semi-stable model of $X_{\mathbb{C}_p}$, x a node of \mathfrak{X}_s . Then \mathfrak{X} étale loc. \simeq Spec $O_{\mathbb{C}_p}[u,v]/(uv-a)$. Let e edge of dual graph $\mathbb{G}_{\mathfrak{X}}$ of \mathfrak{X} . Set $length(e) := v(a) \leadsto$ metric on $\mathbb{G}_{\mathfrak{X}}$. $X_{(2)}^{an} \simeq \text{inj lim}_{\mathfrak{X}} V(\mathbb{G}_{\mathfrak{X}}) \leadsto$ natural metric d on $X_{(2)}^{an}$.

 $\phi^{log}: \mathfrak{X}^{log}_s \overset{\sim}{\to} \mathfrak{Y}^{log}_s \Longrightarrow \mathbb{G}_{\mathfrak{X}} \overset{\sim}{\to} \mathbb{G}_{\mathfrak{Y}}$ is an isometry apply to open subgroups $\leadsto \phi^{\rm an}_{(2)}: X^{\rm an}_{\mathbb{C}_p,(2)} \to Y^{\rm an}_{\mathbb{C}_p,(2)}$ is an isometry.

Let $x_0 \in X_{(2)}^{an}$.

Proposition

Let $x \in X_{\mathbb{C}_p}^{\mathrm{an}}$, then x is a \mathbb{C}_p -point (is of type 1) if and only if:

$$d(x_0,x) := \sup_{U} \inf_{z \in U_{(2)}} d(x_0,z) = +\infty$$

where U goes through open neighbourhood of x in $X_{\mathbb{C}_p}^{\mathrm{an}}$.

Sketch:

Metric extends to $\iota(\mathbb{G}_{\mathfrak{X}}) \leadsto$ reduce to the case of a disk in $X_{\mathbb{C}_p}^{\mathsf{an}} \setminus \iota(\mathbb{G}_{\mathfrak{X}})$. In a disk, explicit description of the metric:

$$\begin{aligned} d(b_{a,r},b_{a',r'}) &= |log_p(r) - log_p(r')| & \text{if } |a-a'| \leqslant max(r,r') \\ &= -2v(a-a') - log_p(r) - log_p(r') & \text{if } |a-a'| \geqslant max(r,r') \end{aligned}$$

If $b_{a',r'} \to x$ of type 1, $r' \to 0$ so $d(b_{a,r},b_{a',r'}) \to +\infty$. If $(B(a_i,r_i))_{i\in\mathbb{N}}$ is a decreasing seq of balls s.t. $\bigcap_i B(a_i,r_i)=\emptyset$, $r_i\to r>0$. $\implies \phi^{an}$ preserves points of type 1.

If x is a point of type 1, then x is rigid, if and only if the image $p(D_x)$ by the augmentation map $p: \Pi_X \to G_K$ is open.

 $\implies \phi^{\rm an}$ preserves rigid points.

If X satisfies RNS and $\Pi_X \simeq \Pi_Y$, does Y satisfies RNS? Not known in general...

Theorem (Mochizuki)

Let QT (quasi-tripods) be the smallest family of hyperbolic orbicurves over finite extensions of \mathbb{Q}_p such that:

- $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ belong to \mathcal{B} ;
- If X belongs to QT and Y → X is an open embedding, then Y belongs to QT;
- If X belongs to QT and $Y \to X$ is finite étale, then Y belongs to QT;
- If X belongs to QT and $X \to Y$ is finite étale, then Y belongs to QT.
- If X belongs to QT and Y → X is a partial coarsification, then Y belongs to QT.

If X and Y are hyperbolic orbicurves such that $X \in \mathcal{QT}$, then every isomorphism $\Pi_X \xrightarrow{\sim} \Pi_Y$ comes from an isomorphism $X \xrightarrow{\sim} Y$

Corollary

Let \mathcal{M} be the smallest family of hyperbolic orbicurves over finite extensions of \mathbb{Q}_p such that:

- Hyperbolic Mumford curves belong to M;
- If X belongs to M and Y → X is an open embedding, then Y belongs to M;
- If X belongs to M and Y → X is finite étale, then Y belongs to M;
- If X belongs to \mathcal{M} and $X \to Y$ is finite étale, then Y belongs to \mathcal{M} .
- If X belongs to M and Y → X is a partial coarsification, then Y belongs to M.

If X and Y are hyperbolic orbicurves such that $X \in \mathcal{M}$, then every isomorphism $\Pi_X \stackrel{\sim}{\to} \Pi_Y$ comes from an isomorphism $X \stackrel{\sim}{\to} Y$